the future of love
Trendvision Bodil Jurg
In order to provide a fabric sound evaluation system for designing auditory-sensible fabrics, sound parameters are obtained, including the level pressure of total sound (LPT), sound color factors (ΔL and Δf), three coefficients (ARC, ARF, ARE) of autoregressive models based on the fast fourier transform spectrum, loudness(Z) and sharpness(Z) from Zwicker's psychoacoustic models, and mechanical properties from KES values for wool suiting fabrics. As psychophysical characteristics, subjective sensations of softness, loud ness, sharpness, clearness, roughness, highness, and pleasantness of the fabric sounds are evaluated by the free modulus magnitude estimation. Tropical wool has the lowest loudness(Z) and the highest ΔL value among the fabrics. Melton, a thicker and heavier woolen, shows a trend similar to saxony and flannel for sound parameters. Wool suiting fabrics have higher scores for loudness and highness rather than clearness and pleasant ness, except for tropical wool, which has the highest scores for pleasantness among the fabrics. Using the modified stepwise regression of Kawabata, all sensations are predicted by both sound parameters and mechanical properties. The sound sensation of wool suiting fabrics is related mainly to tensile, surface, and shear properties in mechanical measure ments and with autoregressive coefficients as sound parameters. A Fabric Sound Evaluation System for Totally Auditory-Sensible Textiles. Available from: http://www.researchgate.net/publication/240721195_A_Fabric_Sound_Evaluation_System_for_Totally_Auditory-Sensible_Textiles [accessed Nov 25, 2015].